Different Subspace Classification

نویسندگان

  • Gero Szepannek
  • Karsten Luebke
چکیده

We introduce the idea of Characteristic Regions to solve a classification problem. By identifying regions in which classes are dense (i.e. many observations) and also relevant (for discrimination) we can characterize the different classes. These Characteristic Regions are used to generate a classification rule. The result can be visualized so the user is provided with an insight into data for an easy interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

USING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS

This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Cancer molecular pattern discovery by subspace consensus kernel classification.

Cancer molecular pattern efficient discovery is essential in the molecular diagnostics. The characteristics of the gene/protein expression data are challenging traditional unsupervised classification algorithms. In this work, we describe a subspace consensus kernel clustering algorithm based on the projected gradient nonnegative matrix factorization (PG-NMF). The algorithm is a consensus kernel...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Extended Averaged Learning Subspace Method for Hyperspectral Data Classification

Averaged learning subspace methods (ALSM) have the advantage of being easily implemented and appear to outperform in classification problems of hyperspectral images. However, there remain some open and challenging problems, which if addressed, could further improve their performance in terms of classification accuracy. We carried out experiments mainly by using two kinds of improved subspace me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004